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Abstract-The methods of finite-element analysis are applied to the problem of large deflec
tion elastic-plastic dynamic responses of cylindrical shells to transient loading. Assumed
displacement quadrilateral finite-elements of a cylindrical panel are used to idealize the
cylindrical shell structure. The formulation is based upon the Principle of Virtual Work and
D'Alembert's Principle. A direct numerical integration procedure is employed to solve the
resulting equations of motion timewise. The present predicted dynamic responses of an
explosively-loaded clamped cylindrical panel are compared with other independent predictions
and with experimentally measured responses; very good agreement is observed.

I. INTRODUCTION

Various flight, water, and land vehicles and stationary structures may be subjected to
collision, impact, blast, and/or other intensive transient loads which can cause large transi
ent structural deformation and damage. The need for accurate and efficient methods for
structural analysis and design, especially for this category of large-deflection (geometrically
nonlinear) and elastic-plastic (materially nonlinear) dynamic response problems has been
increasingly evident recently.

Variou~ methods of analysis have been devised for predicting this kind of response
behavior. Among them the two most general and versatile methods are the finite-difference
method and the finite-element method. In the finite-difference method, the space and time
derivatives of the field variables in the governing differential equations or in the variational
(energy) functional are replaced by appropriate finite-difference expressions. As for the
finite-element method which is most systematically based on variational principles, the
entire domain of the structure is idealized as an assemblage of a finite number of regions
(elements) which are connected at a finite number of nodes along inter-region boundaries,
and suitable interpolation functions are selected to describe the distribution of each quant
ity throughout each finite element. The resulting system of second-order ordinary differ
ential equations of motion are solved timewise by using an appropriate integration operator.
The relative ease and versatility with which the finite-element method can be applied to
structures with complicated geometric shape, material properties, and boundary conditions
in comparison with the finite-difference method is often regarded as an important attribute
of the finite-element method.
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For analyzing the problems of the present category-large deflection, elastic-plastic
dynamic responses, the finite-difference method has undergone intensive development
and has been applied, for example, to beams, rings, plates, and single-layer shells[I-6].
More recently, it has been extended to analyzing multi-layer shells[7] and soft-bonded
layered shells[8]. However, only limited finite-element development has been reported for
this class of problems[9-l2]. In this paper, application of the finite-element method is
extended to cylindrical shells undergoing large-deflection elastic-plastic responses.

The conventional form of the finite-element formulation is presented here in general
three-dimensional tensor form. This is then specialized to represent a cylindrical shell
structure which is idealized as an assemblage of a finite number of quadri,l~teralcylindrical
panel elements. Comparisons of the present predictions with other independent predictions
and with experiments for an explosively loaded cylindrical panel are made.

2. GENERAL FORMULATION

2.1 The spatial finite-element approximation

Consider a deformed continuum in equilibrium. The Principle of Virtual Work states
that the virtual work, bW, done by the external forces (body forces and surface tractions)
is equal to the virtual work, bU, of the internal stresses, i.e.

where

bU-bW=O

bU= J. Sijb)lijdV
v

bW = J. pBi bUi d V + J T i bUi dA.
v A~

(1)

(1a)t

(1 b)

In this equation Sij is the Kirchhoff stress tensor, B i is the body force, T i is the externally
applied surface tractions, )lij is the Lagrangian strain tensor, Ui is the displacement compon
ents, p is the mass density, and only displacement variations (b) are permitted. All pertinent
quantities are described consistently with respect to a curvilinear coordinate system (termed
Lagrangian coordinates) ~i. Also, the integrations extended over the entire undeformed
volume, V, of the continuum which is bounded by the undeformed surface A. The surface
A may be divided into a prescribed-surface-traction boundary, A~, and a prescribed
displacement boundary Au.

By employing the concept of D'Alembert's Principle, the body forces pBi may be regarded
as consisting of D'Alembert inertia forces ( - pili) and other body forces pfi (gravitational,
magnetic, etc.). Thus,

pBi = _ pili + pfi

where ( . ) denotes partial differentiation with respect to time t.
The nonlinear strain-displacement relation may be expressed as

Yij = (ui,j + Uj,i + Ua,iu~j)/2

(2)

(3)

t The customary tensor indicial and summation convention are used. Latin minuscules range over the
values I, 2, and 3.
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where ( ),i denotes covariant differentiation with respect to ~i using the metric tensors of
the undeformed state.

Let the continuum be subdivided conceptually into N finite elements. Then, one may
write equation (1) as the sum of the contributions from each of the finite elements as
follows:

where

N

L (()Un - oWn) = 0
n=1

OWn=f p(-iii+fi)Jui dV + f TiouidA
Vn ~An

(4)

(4a)

(4b)

where Vnis the volume of the nth discrete element, and An is the portion of the surface area
of element n, over which the surface traction T i is prescribed.

If one chooses for each element an assumed displacement field of the form

(5)

where Ni(~j) is an appropriately assumed interpolation function and {q} represents conveni
ently chosen generalized nodal displacements of the element, it follows that

Hence,

OUi lNd{oq}. (6)

(7)

where D ij , Dai , and D/ are the appropriate associated differential operators which may be
expressed symbolically in the form

lDijJ = lNi,j + Nj,d/2
lDad = lNa,d, lD/J = IN,/J. (7a)

Employing equations (6) and (7), equation (4) becomes

.tll0qJ(Ivn {Dij}Si
j
dV + Iv

n
{DaJlD/JS

ij
dV{q}

- f {NJpfi dV - f {NihTi dA + f {NJplNiJ d V{ij}) = 0 (8)
Vtt An Vn

where subscript" b" is used to signify that {NJ are evaluated along the element boundary.
One next proceeds to express the stresses in terms of the displacements via the stress

strain relations and the strain-displacement relation, as follows:

(9)

where Eijkl consists of elastic constants and "lkt represents the component of the total plastic
strain (or other given initial strain). Substituting equation (9) into equation (8), also since
the element nodal generalized displacements {q} for different elements are not completely
independent, a transformation [J] is required to relate the element nodal displacements to
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independent global nodal generalized displacements {q*} for the discrete-element assem~

bIage, one obtains:

where

N

L lbq*J([m]{ij*} + [k]{q*} -{f} - fqNL} _{fpL} - {j~NL}) = 0
n=l

[m} = [JjT f {Ni}plNiJ dV[J}
Vn

[k} = [J}T f {Dij}EijkllDkd dV[J]
Vn

{f} = [JY (f p{NJf' d V + J {NihTi dA)
Vn An

{f/L
} = [JY(- f {Dij}Eijkl<lqJ{DckHD/J{q}!2) dV

Vn

- f {DaiHD/JEijkl<lDkl1{q} + lqj{DckHD/1{q}!2) dV{q}»)
Vn

u;,L} = [JYf {Dij}EijkIYkt d V
Vn

{f/L} = [JV f {DaJlD/JEijkIYkt dV{q}
Vn

(10)

(IOa)

performing the summation and because the variation {bq*} can be independent and arbi~

trary, the following equilibrium equation is obtained [10, II, 13J:

(II)

(12)

where [M] and [K} are the usual global mass and stiffness matrix, respectively (for linear
elastic small deflection behavior), {F/ L

} represents a "generalized loads" vector arising
from large deflections, {FpL} and {F/ L

} are the generalized load vectors due to the presence
of plastic strains and are associated, respectively, with the linear and nonlinear terms of
the strain-displacement relations.

It perhaps should be noted that by solving equation (8) directly, an alternate formula
tion wherein the stresses are retained in explicit form has been presented in [9] and [IO}.

2.2 Timewise solution process

Given a set of initial conditions {q*} and {q*} at t = 0, {F} as a function of time, and the
proper boundary conditions, equation (II) may be solved by employing an appropriate
timewise finite-difference operator. In the present analysis, the Houbolt (4-point backward
difference) operator is chosen for use. The {ij*} at any instant of time tm+1 is approxima
ted by

{ij*}m+t = (2{q*}m+l - 5{q*}m + 4{q*}m-1 {q*}m- 2)!(At)2.

Employing equation 12, equation II becomes

(2[M} + (At)2[K}){q*}m+l [MJ(5{q*}m - 4{q*}m-l +{q*}m-2)

+ (At)2({F}m+l + {F/L}m+! + {F/}m+l + {F/L}m+l)' (13)
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This calculation method is not self-starting; a special "commencing sequence"[14] which
provides {q*}1 at t1= At and {q*}-1 at a negative (fictitious) time L 1 = -At can be used.

It perhaps should be noted that in equation (13), the generalized nodal load vectors
{F/L}m+l' {F/}m+l' and {F/L}m+l which may be due to large deflections and/or elastic
plastic .effects depend on the displacements (or stresses, strains) at that time instant tm + I'

but this information remains to be determined. Thus, extrapolation (or iteration) is needed
at each time step of calculation. Linear extrapolation from known information at tm

and tm - 1 is employed in the present calculations to estimate these force values, i.e.

({F/L} + {F/} + {F/L})m+1 =; 2({F/L} + {Fp
L}+ {F/L})m

- ({F/ L}+ {E/} + {F/L})m_I' (14)

Also, it is seen that the evaluation of {F/ L
}, {F/} and {F/ L

} as in equation (II) involves
volume integration over each discrete element of certain quantities which change with
time and hence must be re-evaluated, in general, at each instant of time. For the structure
undergoing large deflection, elastic-plastic behavior, it is impractical to evaluate these
volume integrals analytically. Accordingly, numerical integration such as Gaussian quad
rature is employed herein. This requires that the stresses and strains be evaluated at a
selected finite number of stations over the areawise and depthwise region of each element.

Knowing {q*}m+I' one can calculate the strain increment (AYij)m+1 from time tm to tm+1

at any station in the element from the relation

(AYij)m+1 = lDijj{Aq}m+1 + lqJm+I{DaJlD/j{Aq}m+1

- (A[qmJ+,{DaJlD/j{Aq}m+I)/2 (15)

where

(I Sa)

With the knowledge of the stresses at time tm and the strain increments, one can determine
the stress increment and the stresses at time tm + I by using the pertinent elastic-plastic
stress-strain relations including the yield criterion and flow rule.

2.3 Evaluation of stresses and plastic strains

A convenient way to compute the stress increment and/or plastic strain increment at
any station (such as Gaussian, for example) in each element at time tm + I' as discussed in
[3] will be employed. Also, because the" mechanical sublayer material model "[15, 16] is
adopted, the only constitutive relation utilized is that for a homogeneous, initially iso
tropic, elastic, perfectly-plastic, strain-rate dependent solid; strain hardening is automatic
ally accommodated by this model which includes kinematic hardening and the Bauschinger
effect.

It is assumed that all stresses and strains are known at time tm and that all displacements
are known at time tm+l • To find the stresses (S/)m+l at time tm+l , one begins by assuming
that the strain increment (AY/)m+ 1 from time tm to time tm + 1 is entirely elastic, and a trial
(superscript T) value of stress increment is calculated from the following relation for
three-dimensional behavior:

(16)
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where E is Young's modulus, v is Poisson's ratio and b/ is the Kronecker delta. Hence, the
trial stresses at time tm + 1 are given by

( 17)

Then a check is performed by substituting this trial value of the stress into the Mises
Hencky yield function[17, 18], <1>, to determine whether or not the trial stress state lies
inside of the yield surface; thus

(18)

where uy is the appropriately known uniaxial yield stress of a given mechanical sublayer of
the material-behavioral model.

[f <I>~+ 1 < 0, the trial stress state lies within the elastic domain bounded by the yield
surface. Therefore, for this time step there has been no plastic flow and the incremental
deformation can be only elastic. Hence, the actual stress (S/)m+l is equal to the trial stress;
thus

(19)

and the plastic strain state is

(Y/)~'+l = (y/)~. (20)

However, if <I>~+ 1 ;::: 0, the trial stress state lies on or outside of the yield surface (i.e. in
the undefined region). Therefore, the trial assumption that the entire strain increment is
an elastic-strain increment is not valid. Plastic flow has occurred within this time step and
the actual stress state must lie on the yield surface according to the theory of perfect plas
ticity; then the calculation proceeds as follows. The total strain increment may be decom
posed into elastic and plastic components

(21)

Since the material is assumed to be incompressible with regard to plasticity and by the
flow rule[17, 18], one has

(LiY/)~+1 = (LiY/)~~1 = (S/)~~l)' (22)

where (Liy/)DP is the deviatoric component of the plastic strain increment, and A is a real
nonnegative scalar quantity; also, the deviatoric component of the trial stress (S/)~~ 1

which lies between (S/)mD and (S/)~+l is used to approximate the actual deviatoric stress
value. Then the stress increment is

. E [. V k . . DT ;.]
(LiS/)m+l = -I- (LiY/)m+l +-12 (LiYk )m+l b/ - (S/)m+l .+ v - v

and the actual stress at time fm + 1 is

(S/)m+l = (S/)m + (LiS/)m+l =(S/)~+l (S/)~~lA.

The plastic strain at time tm + 1 is

(Y/)~+l = (y/),/ + (S/)~~l A.

(23)

(24)

(25)

The quantity Aand A( :=AE/(1 + v») in equations (24) and (25) can be determined from the
fact that (S/)m+l must satisfy the yield condition:

<l>m+l = [(S/)m+l(S/)m+l - HS/);,+tl- -to/ = O. (26)
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Substituting equation (24) into equation (26) and solving for X one obtains the physically
valid value

where

A (S i)DT (S j)DT 1 (S ks k)DT= j m+l i m+l - 3 k k m+l

B - (S i)T (S j)DT I (S k)T (S k)DT
- j.m+l i m+l -3 km+l k m+l

C - mT - (S i)T (si)T 1(S kS k)T 2 2-Wm+l- j m+l i m+l -3 k k m+l -J(J'y

(27)

(27a)

The preceding discussion has pertained to the use of elastic, perfectly-plastic rate-inde
pendent material whose yield stress is (J'y (J'o, the static value. However, if the yield stress
is rate dependent, the same procedure applies except that the yield stress (J'y in equations
(18) and (26) is the strain-rate-dependent yield stress which is given approximately by[2, 19]:

(28)

where (J'o is the static uniaxial yield stress, D and p are material constants, and E is the
uniaxial strain rate. For the three-dimensional problem, it is assumed that Eof equation (28)
may be replaced by the second invariant of the deviatoric strain-rate tensor. Thus, this
equivalent strain rate is given by

E= Je![y/i'/ - Hy/)2]) (29)

where the strain-rate components y/ are given by y/ = (l1y/)/(l1t).
The discussion spanning equation (16) to equation (29) applies to any given mechanical

sublayer of the material model at any spanwise or depthwise Gaussian (or checking)
station in the structure. Such a procedure is applied to every mechanical sublayer of the
material model at that Gaussian station.

During the operation of this solution process for intensive loading problems, instances
of large strain increments can occur which sometimes may lead to an imaginary value of A.
Since the time-step size for that particular instance cannot be economically reduced, a
sub-increment procedure to circumvent this difficulty as discussed in [20] can be, and is,
used.

3. QUADRILATERAL CYLINDRICAL PANEL ELEMENT

3.1 Displacement field

The geometry and nomenclature of a typical quadrilateral cylindrical panel element
are shown in Fig. 1. The radius is R. The reference Cartesian coordinate systems are
(yl, y2, y3) and (yl, y2, y3). The local cylindrical shell coordinate system is (e, '7, O.

Let the Kirchhoff-Love hypothesis be employed. The displacement field ii, V, and wof the
shell may be approximated by the middle surface displacements u, v, and w, and rotations
</J and !/J as follows:

IJSS Vol. 10 No. 2-H

u(e, '7, 0 = u(e, 11) - (</J(e, 11)

vee, 11, 0 = vee, 11) - (!/J(e, 11)

wee, 11, 0 w(e, 11)

(30)
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8 =." IR

O-Element node number

where

y'

Fig. I. Quadrilateral cylindrical panel discrete element.

¢(~, /1) = Jw/J~

lj;(~, /1) = (Jw/J/1) - viR.
(30a)

(31)

The engineering component of the nonvanishing strain distributions may be expressed as

s~~ = c~~ - (K~~

Sqq = Cqq - (Kqq

S~q = C~q - (K~q

where c~~, Cqq , and C~q are the midsurface inplane strains, and K~~, K qq , and K~q are the
curvature changes. In the formulation of the present problem, the Sanders nonlinear
strain-displacement relations are employed which for the cylindrical shell may be
written as:

where

C~~ = (Ju/J~) + (¢2 + lj;2)/2

Cqq = (Jv/J/1) + (w/R) + (¢2 + lj;2)/2

C~q = (Ju/J/1) + (Jv/J~) + ¢lj;

K~~ = J¢/J~

K qq = Jlj;/J/1

K~q = (J¢/J/1) + (Jlj;/J~) + X/R

x = (Ju/J/1 - Jv/J~)/2.

(32)

(32a)

The selection of a suitable interpolation function to represent each of these displace
ments throughout each element is one of the principal concerns in the construction of a
finite-element assemblage of the whole structure. For small-deflection, linear-elastic prob
lems,[22] reported a quadrilateral cylindrical-panel element where bicubic-degree poly
nomials (first order Hermite interpolation in ~ and /1) are used to represent both the inplane
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displacements u, v, and the out-of-plane displacement, w; 12 degrees of freedom (dof's) at
each corner node (denoted, for convenient reference, as e.e.e. or cubic, cubic, cubic
element). Reference [23] reports a study of a quadrilateral element with bilinear polynomials
for u and v, and bicubic polynomilas for w; 6 dof's per node (termed as L.L.e. or linear,
linear, cubic element). It has been concluded[23] that the explicit inclusion of rigid-body
displacement modes in the assumed displacement field lead to a much better coarse-mesh
solution than if the rigid-body modes were excluded from the assumed displacement
functions, despite the fact that incompatibility of the displacements along the circumfer
ential edges is introduced by the explicitly-added rigid-body modes which are expressed
in terms of trigonometric functions. Further, it has been found in [10] and [24] for ring
examples and in the present study for a cylindrical shell example that the accuracy and
convergence behavior of the predictions can be improved further by using an L.C.e. element
(or linear, cubic, cubic element); that is, bilinear polynomial for the axial displacement u,
and bicubic polynomials for both the circumferential displacement v and the transverse dis
placement, w, and with the rigid body modes included explicitly. This L.e.e. assumed
displacement function can be written as

u = :;(1 + ';:;(2 + 1]Ct. 3 + ';IW4 - R sin 0:;(6 + R(cos 0 - cos {J):;(IO

V = cos (J:;(5 + .; cos (JCt. 6 + 1]:;(7 + ';1]:;(8 - sin (JCt. 9

+ .; sin (J:;(j 0 - R(l - cos 0 cos {J):;(11 + e:;(25 + '1
2

Ct.26

+ .;2'1:;(27 + ';1]
2

Ct.28 + ';2'1
2

:;(29 + .;3Ct.30 + '1
3

:;(31

+ .;3'1:;(32 + ';'1
3

Ct. 33 + ';3'1
2

:;(34 + ';2'1
3

:;(35 + ';3'1
3

:;(36

W = sin (J:;(5 + .; sin (J:;(6 + cos (J:;(9 - .; cos OCt. I 0

+ R sin (J cos {J:;(11 + ';1]:;(12 + eCt. 13 + '1
2

:;(14

+ .;2'1:;(15 + ';'1
2

:;(16 + ';2'1
2

:;(17 + .;3a18 + '1
3

:;(19

+ ';3'1Ct. 20 + ';'1
3

:;(21 + ';3'1
2

Ct. 22 + ';2'1
3

:;(23 + ';3'1 3Ct. 24

where Ct. 1, :;(2 ••• Ct. 36 are parameters which will be expressed in terms of the generalized
nodal displacements. Except for the terms from :;(25 to :;(36' the field represented by equation
(33) is that of the L. L.e. element function of [23].

The generalized nodal displacements which are chosen to characterize the deformation
state of the element, are selected such that there are nine degrees of freedom u, v, w, ¢,
ljJ, 02 W/ 0 '; 0'1, ov/o.;, ov/O'1 + w/R, and 02V/ 0'; 0'1 at each of the four corner nodes of the
element.

For the static linear-elastic pinched cylinder example of Fig. 2, the predictions of the
displacement under the load obtained by using the present L.e.e. element and those of
[22] and [23] are given in Table I. Advantage of symmetry is taken by analyzing only one
octant of the cylindrical shell. It is seen that the L.e.e. element, I 35-dof solution is of the
same accuracy as the e.e.e. element or the L.L.e. element 180-dof prediction. Incidentally,
Timoshenko's analytical solution[25] tends to be somewhat too stiff, because an inexten
sional theory is used.

3.2 Stress-strain relation

Because of nonlinear material behavior, although the strain variation through the shell
thickness, by the Kirchhoff-Love hypothesis, is linear, the variation of stress across the
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2x4 mesh

p = 100Ib
L = 1035 In
t = 0·094 in

R= 4953 in.

E = 105 X 10
6 psi

v = 0-3125

Fig. 2. Pinched cylinder.

thickness may be nonlinear. For computational convenience, the stresses and strains are
evaluated at selected Gaussian points across the thickness, and the corresponding weight
ing factors are used in evaluating the pertinent integrals by Gaussian quadrature. The
strain-hardening behavior of the material is accounted for by using the mechanical sub
layer material behavior model in which the material at each Gaussian station is treated as
consisting of equally-strained sublayers of elastic, perfectly-plastic material with each
sublayer having the same elastic modulus but an appropriately different yield stress[15, 16].

The Mises-Hencky yield condition for the plane-stress case is

(34)

where rly is the known uniaxial yield stress of a given mechanical sublayer of the material
model. This condition establishes a stress boundary such that all possible stress states lie
within or on the envelope <I> = O. In the event that the path between two successive states
lies completely within the envelope, the stresses are below the elastic limit; only elastic
strains occur. The relation between stress increments and elastic strain increments may
be assumed to be linear and to obey Hooke's law:

Table I. Displacement under the load of the pinched cylindert

Mesh
Present

(L.C.C. element)
Bogner et al.[22l
(C.c.c. element)

Cantin & Clough[23]
(L.L.c. element)

L.L.c. element but
without rigid-body

modes[23]

No. of
eqs.

Displ.
in.

No. of Displ.
eqs. in.

No. of
eqs.

Displ.
in.

No. of
eqs.

Displ.
in.

2x2
2x3
2x4
2x5
2x7
2x9
3 x 49

81
108
135
162

-0,0897
-0.1066
-0,1106
-0,1119

108 -0,0808
144 -0,1036
180 -0,1098

108
144
180

1200

-0'0780
-0,1002
-0,1073
-0,1128

108 -0,00266
144 -0,00420
180 -0,00590

1200 -0,05583

t Timoshenko solution[25l (inextensional theory) = -0.1086 in.
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(35)

(36)

On the other hand, if all or a portion of the stress path lies on the boundary, plastic strains
are possible. The direction of the plastic strain increment vector is established by the plastic
flow rule in accordance with the theory of the plastic potential [I 7, 18]. The flow rule can be
expressed as follows:

/1e~l = 11(20'~~ - 0'~~)

/1e~/ = 11(20'~~ - O'~~)

/1e~/ = },60'~~

where the plastic flow parameter, 11, is a non-negative quantity which is determined (i) from
the fact that the head of the new stress vector must lie on the yield surface, and (ii) by
following the procedure as described in subsection 2.3.

4. NUMERICAL RESULTS AND DISCUSSION

In order to evaluate the accuracy and versatility of the present formulation and solution
scheme, the explosively loaded 6061-T6 aluminum alloy cylindrical panel depicted schem
atically in Figs. 3 and 4 has been analyzed. The present large-deflection elastic-plastic
predictions are compared with those from available independent PETROS 2 finite-difference
(both spatial and temporal) predictions(3] and with high quality experimental records(26].

The cylindrical panel has the following dimensions: external radius, 3·0 in. ; axial length,
12·56 in.; arc span between supports, 120°; and thickness, 0·125 in. All four edges of the
panel are "ideally clamped." Over the explosively-loaded portion of the shell, the initial

Sheet
explosive

\ Strain gages
\

Detonator
~x,

, ><!est speCi men

/~

~upport ~
and baffle ~ i

X

Fig. 3. Experimental arrangement for an explosively-loaded cylindrical panel.
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Geometry Material properties

Midsurface radius 29375 in. Motenal ED61-T6
Thickness 0'125 in. Elastic modulus 10·5 x 10"psi
Length 12·56 in. yF'o,e,sldsosntSrersast'o 1/3
Arc-span between 44,OOOpsi.

sllpports 1200 Mass/umt vol. 0'00025 Ib-sec21 1n4

Initial lIniform radial velocity aver loaded regions. 5650 tn/sec

, i
I

30810
I

t54in

·1256,0'"
10205,n

I~_-

7
6

5f-"-"T-"'-""f-"-..,...--."""-"--r-"-'-fc.......+"'""'"f..........,..:.."'-'r~..;.....~...:....:;{
41---t-~~--,-·_· .. 1·--
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Fig. 4. Grid layout for cylindrical panel experiment.

inward radial velocity is 5650 in/sec; elsewhere the initial velocity is zero. Taking into
account symmetry of the explosive loading pattern and geometry, only one half of the
cylindrical panel with the symmetry-prescribed-displacement conditions imposed along
the crown line is modeled. The geometry of this portion is defined in Fig. 4. Since the 6061
T6 shell material exhibits very little strain hardening, its behavior can be reasonably ap
proximated as being elastic, perfectly-plastic (EL-PP); accordingly, for convenience of
legitimate comparison with available past independent predictions of the response of this
panel and for economy reasons, EL-PP behavior with E = 10·5 X 106 psi, (10 44,000 psi,
and v 1/3 has been employed in the present predictions and comparisons. However, if
desired, one can readily take into account the rather small strain-hardening and strain-rate
effects of this material.

Concerning the numerical evaluation of the integrals for determining {F/ L
}, {Fp L} and

{F/ L
} of equation (II), nine Gaussian stations (3 x 3 product) for carrying out the area

integration over each quadrilateral element and 4 depthwise Gaussian points at each
areawise Gaussian station are used, since it has been found that this suffices for providing
accurate evaluations.

Before predictions of desired accuracy can be obtained, the question of convergence of
the solution as the space-mesh size is made finer successively is considered. The peak
deflection of point A(x, y) = (9, 9) on the crown line of the cylindrical panel (see Fig. 4) is
plotted in Fig. 5 against the smallest side Ay of the mesh. This is chosen as a gross (or
global) index of convergence. By using the L.e.e. element, three different mesh sizes:
3, 5, and 7 elements in the circumferential direction are studied; in each case, 8 elements
in the longitudinal dip'ction are used. The meshes are denoted, for convenience, as 8 x 3,
8 x 5, and 8 x 7, respectively. It is seen that the convergence of the present solutions is
monotonic from below toward the reference value (the experimental result, 1·25 in. is
taken as the reference value). Also, it is seen that the L.L.e. element predictions with meshes
8 x 3, 14 x 5, and 10 x 7, tend to be somewhat too stiff to match the experimental value
in comparison with the L.C.e. element coarse-mesh solutions. Shown also in Fig. 5 is the
PETROS 2 finite-difference predictions[3] where much finer meshes 12 x 6, 16 x 8,20 x 10,
and 24 x 12 have been used.
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The above finite-element convergence studies were performed by using the Houbolt
operator with a time-step size of At = 1·5 ftsec. However, it perhaps should be noted that
since for the present nonlinear dynamic system a reliable and validated criterion by which
the proper time-step size can be chosen a priori is not readily available, numerical experi
mentation must be carried out to provide a suitably small At to insure both the stability
and the convergence of the time-wise integration operator. Illustrated in Fig. 6 are the peak
deflection at point A and the time to the peak deflection vs the square of the time-step size;
an 8 x 5 space-mesh of L.e.C. elements is employed.

In order to assess the present predictions, typical comparisons of the deflection responses
(as a global index) and the strain responses (as a local-effect index) are made in the following.
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Fig. 7. Comparison of predicted cylindrical panel crown deflection reponse histories with
experiment.

Shown in Fig. 7 are the measured and predicted time histories of the mid-surface trans
verse displacements of two points A(x, y) = (9, 9) and B(x, y) = (13, 9) on the crown line
of the cylindrical panel. Calculations which utilize a comparable number of degrees of free
dom are selected for presentation here. Accordingly, one half of the cylindrical panel was
modeled by an 8 x 5 mesh of L.e.e. type finite-elements (486 dofs), or by 16 x 8 finite
difference space meshes with 3 dof's at each space-mesh station (total 459 dof's); the
timewise integration operators used are the Houbolt operator with a time-step size of 1'5
ftsec and the 3-point central difference operator with a time-step size of 5/3 ftsec, respectively,
for the present finite-element (FE) and the PETROS 2 finite-difference (FD) calculations.
From this comparison with experimental results, it is seen that the present FE prediction is
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somewhat better than the PETROS 2 FD prediction; however, both calculations underpre
diet the peak deflection. Taking into account the convergence studies shown in Fig. 5, as
the mesh size is made finer, a tendency toward a better correlation can be expected. Also,
in the calculations, the clamped edges of the panel were treated as being ideally clamped;
however, the achievement of an ideally-clamped edge in the experiment may not have been
achieved. This reality should be considered in the theoretical-experimental comparisons.
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Fig. 8. Comparison of instantaneous cylindrical panel crown deformation profile for
predictions and experiment.

Shown versus the experimental result in Fig. 8 are the present FE-predicted and PETROS
2 FD-predicted deformation profiles of the cylindrical panel crown-line (line at circumferen
tial station y = 9) at a time of 400 Jlsec. Another comparison is made in Fig. 9 for the esti
mates of the final permanent deformation profile of a cross section at an axial station
x = 9. It was based upon an examination of the time-history behavior of the predicted
responses that the profile at t = 1000 Jlsec would represent a reasonably good estimate of
the permanent deformation. Figures 8 and 9 show that both the present predictions and
the PETROS 2 predictions are in reasonably close agreement with experiment, with the
finite-element prediction being somewhat better.

The dynamic strain responses provide a local and more sensitive quantity for examina
tion. Figure 10 shows the time history of the inner surface circumferential strain at point
C(x, y) = (14,3). The PETROS 2, 16 x 8 space-mesh predicted strain responses (plotted
in Fig. lOa) is largely one of tension as compared with compression which was measured
during about the first 600 flsec. However, as space-mesh size is made finer, improvement in
agreement is observed, such as illustrated by the 32 x 16 space-mesh prediction and the
array B mesh prediction [3]. The meshing used in array B was the uniform 16 x 8 mesh but
modified to be finer near each clamped edges by the addition of 4 evenly-interspersed
coordinate curves; a 24 x 12 nonuniform space-mesh resulted. On the other hand, the
present finite-element 8 x 5 mesh prediction is shown in Fig. lO(b); the strains at point C
within the finite element were calculated from the strain-displacement relations, equation
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Fig. 9. Estimates of final deflection of a cross section of the cylindrical panel versus
experiment.

(32), by taking the derivatives of the assumed displacement function. By noting the coarse
ness of the 8 x 5 mesh employed, the agreement with experiment is considered to be
excellent.

Based upon the studies cited here and in [3] and [7], it appears that in order to obtain
comparable prediction accuracy, both the storage requirements and the CPU computer
time for the FE method vs the FD method are comparable. A similar conclusion is reported
in [10] for two-dimensional (beam and ring) structural transient response problems involving
large deflections and elastic-plastic behavior.
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Fig. 10. Comparisons of inner-surface circumferential strains at cylindrical panel station
(14,3).
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5. SUMMARY REMARKS

The finite-element solution procedure as described herein has been shown to provide another
effective method for treating the large deflection transient responses of a cylindrical shell
including elastic-plastic material behavior. The method is capable of providing accurate
predictions, especially of the strain, with rather coarse meshes compared with those needed
for comparable accuracy by the finite-difference method. A quadrilateral cylindrical panel
element is employed. The assumed displacement fields are represented by a bilinear poly
nomial expression for the axial displacement u, and bicubic polynomials for both the cir
cumferential v and the transverse w displacements, with the rigid-body modes taken into
account explicity.

Extensions of the present formulation to complex structures such as stiffened shells and!
or structures with cutouts, branches, etc. will be of interest and are in progress.
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Pe310Me - MeTonbI aHaJlH3a <!lHHllTHbIX :meMeHTOB np"MemUOTC51 nJl51 np06JleMbl 60JlblllOrO
OTKJlOHeHH5I :maCTll'lHO-nJlaCTH'IHOH nHHaMH'IeCKOH xapaKTepHcTHKH uHJlllHnpH'IeCKliX KOlKy
XOB lIpH nepexOnHOH Harpy3Ke. C ueJIb llneaJllf3HpOBaHH5I CTpyKTypbl UHJllHnp"'leCKOrO
KOlKyxa, npHMeH5IeTC51 CneUllaJlbHOe npenrrOJlOlKeHlle '1eTblpexyrOJIbHOrO CMell.\eHH5I QJllHllTHblX
:meMeHTOB UllJIHHnpll'leCKOH lIaHeJlll. <!>OPMYJlHpOBKa OCHOBbIBaeTC5I Ha rrpliHuHrre B03MOlK
HblX rrepeMell.\eHllH H Ha rrpHHUlirre n'AJIaM6epa. .ami pellleHllll lIOJlY'lllBllIllXC5I ypaBHeHllH no
BpeMeHll rrp"MeHlIeTC5I rrpouenypa HerroCpenCTBeHHoro '1HCJleHHOrO llHTerplipoBaHlili. Ilpen
CKa3aHHa51 HaCT05lll.\HM nHHaMll'leCKa51 xapaKTepllcTliKa B3pbIB'IaTO HarpylKeHHoH UlJllHnp"
'1eCKOH lIaHeJlH cpaBHllBaeTC5I C npyrllMli He3aBllCllMblMH rrpe,1ICKa3aHH5IMli II C 3KcnepliMeH
TaJlhHO BhlMepeHHoH nHHaMll'leCKOH xapaKTep"cT"KOH, HalllJlH, 'ITO pe3YJlhTaTbI COBlIaJIli.


