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Abstract—The methods of finite-element analysis are applied to the problem of large deflec-
tion elastic—-plastic dynamic responses of cylindrical shells to transient loading. Assumed-
displacement quadrilateral finite-elements of a cylindrical panel are used to idealize the
cylindrical shell structure. The formulation is based upon the Principle of Virtual Work and
D’Alembert’s Principle. A direct numerical integration procedure is employed to solve the
resulting equations of motion timewise. The present predicted dynamic responses of an
explosively-loaded clamped cylindrical panel are compared with other independent predictions
and with experimentally measured responses; very good agreement is observed.

1. INTRODUCTION

Various flight, water, and land vehicles and stationary structures may be subjected to
collision, impact, blast, and/or other intensive transient loads which can cause large transi-
ent structural deformation and damage. The need for accurate and efficient methods for
structural analysis and design, especially for this category of large-deflection (geometrically
nonlinear) and elastic—plastic (materially nonlinear) dynamic response problems has been
increasingly evident recently.

Various methods of analysis have been devised for predicting this kind of response
behavior. Among them the two most general and versatile methods are the finite-difference
method and the finite-element method. In the finite-difference method, the space and time
derivatives of the field variables in the governing differential equations or in the variational
(energy) functional are replaced by appropriate finite-difference expressions. As for the
finite-element method which is most systematically based on variational principles, the
entire domain of the structure is idealized as an assemblage of a finite number of regions
(elements) which are connected at a finite number of nodes along inter-region boundaries,
and suitable interpolation functions are selected to describe the distribution of each quant-
ity throughout each finite element. The resulting system of second-order ordinary differ-
ential equations of motion are solved timewise by using an appropriate integration operator.
The relative ease and versatility with which the finite-element method can be applied to
structures with complicated geometric shape, material properties, and boundary conditions
in comparison with the finite-difference method is often regarded as an important attribute
of the finite-element method.
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For analyzing the problems of the present category—large deflection, elastic—plastic
dynamic responses, the finite-difference method has undergone intensive development
and has been applied, for example, to beams, rings, plates, and single-layer shells[1-6].
More recently, it has been extended to analyzing multi-layer shells[7] and soft-bonded
layered shells[8]. However, only limited finite-element development has been reported for
this class of problems[9-12]. In this paper, application of the finite-element method is
extended to cylindrical shells undergoing large-deflection elastic-plastic responses.

The conventional form of the finite-element formulation is presented here in general
three-dimensional tensor form. This is then specialized to represent a cylindrical shell
structure which is idealized as an assemblage of a finite number of quadrilateral cylindrical
panel elements. Comparisons of the present predictions with other independent predictions
and with experiments for an explosively loaded cylindrical panel are made.

2. GENERAL FORMULATION

2.1 The spatial finite-element approximation

Consider a deformed continuum in equilibrium. The Principle of Virtual Work states
that the virtual work, 6 W, done by the external forces (body forces and surface tractions)
is equal to the virtual work, dU, of the internal stresses, i.e.

SU—-SW=0 M
where
U= [ s18y,;dv (1a)t
1 4
5W=f pB Su,dV + | T'6u; dA. (1b)
V Ac

In this equation S¥ is the Kirchhoff stress tensor, B’ is the body force, T% is the externally-
applied surface tractions, y;; is the Lagrangian strain tensor, u; is the displacement compon-
ents, p is the mass density, and only displacement variations (§) are permitted. All pertinent
quantities are described consistently with respect to a curvilinear coordinate system (termed
Lagrangian coordinates) &'. Also, the integrations extended over the entire undeformed
volume, V, of the continuum which is bounded by the undeformed surface A. The surface
A may be divided into a prescribed-surface-traction boundary, A4,, and a prescribed-
displacement boundary 4,,.

By employing the concept of D’Alembert’s Principle, the body forces pB’ may be regarded
as consisting of D’Alembert inertia forces (— pii’) and other body forces pf* (gravitational,
magnetic, etc.). Thus,

pBi = —piil + pf’ 2)

where ( ) denotes partial differentiation with respect to time ¢.
The nonlinear strain-displacement relation may be expressed as

Vi = e+ s+ Uy, 4 )2 3

+ The customary tensor indicial and summation convention are used. Latin minuscules range over the
values 1, 2, and 3.
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where ( ),; denotes covariant differentiation with respect to &' using the metric tensors of
the undeformed state.

Let the continuum be subdivided conceptually into N finite elements. Then, one may
write equation (1) as the sum of the contributions from each of the finite elements as
follows:

N
Y (8U, —W,) =0 4)
n=1
where
SU,=| SY&y,;dV (4a)
Vn
W, =[ p(—ii'+f)ou;dv + [ T'5u.da (4b)
Vn v An

where V, is the volume of the nth discrete element, and 4, is the portion of the surface area
of element n, over which the surface traction T is prescribed.
If one chooses for each element an assumed displacement field of the form

ui&, 1) = INCEHa()} 5

where N,(&) is an appropriately assumed interpolation function and {g} represents conveni-
ently chosen generalized nodal displacements of the element, it follows that

ou; = |NJ{oq}. (6)
Hence,
5?:’; = [Dijj{éq} + [QJ{DQE}I.D;“J{&?} )

where D;;, D,;, and D/ are the appropriate associated differential operators which may be
expressed symbolically in the form

Dl =[N ;+ N, 2
1 Dul =N, .l IDfI=INL (7a)
Employing equations (6) and (7), equation (4) becomes

éll‘s‘“(ﬁ, (DS dV + [ {D.LDSISY dVigy

- fyn {Nof'dV ~ L {N}, T d4 + fv,, {Ni}plN"JdV{fi}) =0 (¥

where subscript “57 is used to signify that {N;} are evaluated along the element boundary.
One next proceeds to express the stresses in terms of the displacements via the stress—
strain relations and the strain—displacement relation, as follows:

§Y = EM(\ Dy} + 1l D LD Hah 2 — 1) ©)

where EY* consists of elastic constants and y,,” represents the component of the total plastic
strain (or other given initial strain). Substituting equation (9) into equation (8), also since
the element nodal generalized displacements {g} for different elements are not completely
independent, a transformation [J] is required to relate the element nodal displacements to
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independent global nodal generalized displacements {g*} for the discrete-element assem-
blage, one obtains:

ﬂ;léfl({m]{é*} + klg*y - {f} =" = 0 = ") =0 10
where

) =T [ (N JIN'} 4]
W)= WY | {DJE™DuI dVI)
(r=w7 ([, otvastav+ | iriaa)
=01 (- [ DEMINDND a2 ¥
~ J| {DLADFIESAD Ky + DD 2> Vi)
LI =UI" [ (DYES o dv

UM =1 | (DJIDSIE e dVig) (102)

performing the summation and because the variation {g*} can be independent and arbi-
trary, the following equilibrium equation is obtained[10, 11, 13]:

(MKG*} + [KKq*} = {F} + {F,""} + {F,"} + {F,"") an

where [M] and [K] are the usual global mass and stifiness matrix, respectively (for linear-
elastic small deflection behavior), {FqNL} represents a ‘“‘generalized loads™ vector arising
from large deflections, {F,"} and {F,""} are the generalized load vectors due to the presence
of plastic strains and are associated, respectively, with the linear and nonlinear terms of

the strain—displacement relations.
It perhaps should be noted that by solving equation (8) directly, an alternate formula-
tion wherein the stresses are retained in explicit form has been presented in [9] and [10].

2.2 Timewise solution process

Given a set of initial conditions {g*} and {§*} at t =0, {F} as a function of time, and the
proper boundary conditions, equation (11) may be solved by employing an appropriate
timewise finite-difference operator. In the present analysis, the Houbolt (4-point backward
difference) operator is chosen for use. The {§*} at any instant of time ¢, is approxima-
ted by

{§* et = QG ms1 — Hq* Y + Mg o1 — {g*}m—2)/(AD). (12)
Employing equation 12, equation 11 becomes

QIM] + (A [KD{g*}ms 1 = [MI5{g*}n — Hg*hn—1 H{@ m-2)
+ (At)z({F}m+l + {FqNL}m+1 + {FpL}m+l -+ {FpNL}m+l)‘ (13)
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This calculation method is not self-starting; a special “commencing sequence ’[14] which
provides {g*}, at t, = At and {g*}_, at a negative (fictitious) time 7_, = — At can be used.

It perhaps should be noted that in equation (13), the generalized nodal load vectors
{F" Y me1s {F, 1, and {F,", o which may be due to large deflections and/or elastic—
plastic effects depend on the displacements (or stresses, strains) at that time instant ¢, ,,
but this information remains to be determined. Thus, extrapolation (or iteration) is needed
at each time step of calculation. Linear extrapolation from known information at t,,
and ¢,,_; is employed in the present calculations to estimate these force values, i.e.

(FM +{FH +{F D = 20F +(F +(F," D
— AR+ B+ (Y, (14)

Also, it is seen that the evaluation of {F,""}, {F,"} and {F,""} as in equation (1) involves
volume integration over each discrete element of certain quantities which change with
time and hence must be re-evaluated, in general, at each instant of time. For the structure
undergoing large deflection, elastic-plastic behavior, it is impractical to evaluate these
volume integrals analytically. Accordingly, numerical integration such as Gaussian quad-
rature is employed herein. This requires that the stresses and strains be evaluated at a
selected finite number of stations over the areawise and depthwise region of each element.

Knowing {g*},,+,, one can calculate the strain increment (Ay;;),,+, from time ¢, to 1,
at any station in the element from the relation

Ay idmer = 1 Dyl{AG st + 19 lms 1 {Daid L D K AG 4
'—(Alqu+1{Dai}leaJ{Aq}m+1)/2 (15)

where

{Aq}m+l ={q}m+1 -{q}m' (153)

With the knowledge of the stresses at time ¢,, and the strain increments, one can determine
the stress increment and the stresses at time f,., by using the pertinent elastic-plastic
stress—strain relations including the yield criterion and flow rule.

2.3 Evaluation of stresses and plastic strains

A convenient way to compute the stress increment and/or plastic strain increment at
any station (such as Gaussian, for example) in each element at time ¢,,,, as discussed in
[3] will be employed. Also, because the ““mechanical sublayer material model”[15, 16] is
adopted, the only constitutive relation utilized is that for a homogeneous, initially iso-
tropic, elastic, perfectly-plastic, strain-rate dependent solid; strain hardening is automatic-
ally accommodated by this model which includes kinematic hardening and the Bauschinger
effect.

It is assumed that all stresses and strains are known at time #,, and that all displacements
are known at time 1,,,1. To find the stresses (S;’),, at time 1, ,, one begins by assuming
that the strain increment (Ay;"),,+, from time ¢, to time #,,, is entirely elastic, and a trial
(superscript 7) value of stress increment is calculated from the following relation for
three-dimensional behavior:

v

. E .
T __ i
(AS,') = 1_—+ N [(A'Y, Ym+1 + 1—2y

(87 6;‘] (16)
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where E is Young’s modulus, v is Poisson’s ratio and &, is the Kronecker delta. Hence, the
trial stresses at time ¢,,,, are given by

(S;"),ﬁﬂ = (Sji)m + (ASji):;+l . (17)

Then a check is performed by substituting this trial value of the stress into the Mises—
Hencky yield function{17, 18], @, to determine whether or not the trial stress state lies
inside of the yield surface; thus

(Dm+l = {(S )m+} Sj)m-%l - %{Skksk +1} % (18)

where o, is the appropriately known uniaxial yield stress of a given mechanical sublayer of
the material-behavioral model.

If ®T,, <0, the trial stress state lies within the elastic domain bounded by the yield
surface. Therefore, for this time step there has been no plastic flow and the incremental
deformation can be only elastic. Hence, the actual stress (Sj")mﬂ is equal to the trial stress;
thus

(S ms1 = (SHE4s (19)

and the plastic strain state is
(yjl)m*i* ) B ‘))jl)p (20)

However, if ®7 ., >0, the trial stress state lies on or outside of the yield surface (i.e. in
the undefined region). Therefore, the trial assumption that the entire strain increment is
an elastic-strain increment is not valid. Plastic flow has occurred within this time step and
the actual stress state must lie on the yield surface according to the theory of perfect plas-
ticity; then the calculation proceeds as follows. The total strain increment may be decom-
posed into elastic and plastic components

(Alj )m+l _(AYJ m+1 +(ij£)£t+1‘ (21)

Since the material is assumed to be incompressible with regard to plasticity and by the
flow rule[17, 18], one has

(A’V m+1 = (ijl)m+1 - (S 1)211 A (22)

where (Ay;)?? is the deviatoric component of the plastic strain increment, and 1 is a real
nonnegative scalar quantity; also, the deviatoric component of the trial stress (S;/)0%,
which lies between (S;),,” and (S/)., is used to approximate the actual deviatoric stress
value. Then the stress increment is

A8 0er = s | @1 + s G = (P2 2] @
and the actual stress at time 7,4, is
(S et = (S + (ASP s 1 = (SHD41 — (SHEL, A, (24)
The plastic strain at time ¢,,,, is
O =0 +(SHmE1 4 (25)

The quantity 4 and X(=AE/(1 + v)) in equations (24) and (25) can be determined from the
fact that (S;),,+, must satisfy the yield condition:

Dy = [(Sji)m+1(Sij)m+l - %(Skk)iﬂl - %Gyz =0. (26)
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Substituting equation (24) into equation (26) and solving for 1 one obtains the physically
valid value

1=C/(B+ /B> — AC) @n
where
A= (Sji 211 Sij)flr).L “%(Skkskk 251
B = (8 )m+ 1SNt = HSOmrs(S3
C=05; =(Sm1(SHne1 — HSHSHmes — 30,7 (27a)

The preceding discussion has pertained to the use of elastic, perfectly-plastic rate-inde-
pendent material whose yield stress is o, = 0, the static value. However, if the yield stress
is rate dependent, the same procedure applies except that the yield stress o, in equations
(18) and (26) is the strain-rate-dependent yield stress which is given approximately by[2, 19]:

o, =ao[l +|&/D|"7] (28)

where o, is the static uniaxial yield stress, D and p are material constants, and ¢ is the
uniaxial strain rate. For the three-dimensional problem, it is assumed that é of equation (28)
may be replaced by the second invariant of the deviatoric strain-rate tensor. Thus, this
equivalent strain rate is given by

§=V G~ 165D (29)
where the strain-rate components ;* are given by 7;' = (Ay,)/(A1).

The discussion spanning equation (16) to equation (29) applies to any given mechanical
sublayer of the material model at any spanwise or depthwise Gaussian (or checking)
station in the structure. Such a procedure is applied to every mechanical sublayer of the
material model at that Gaussian station.

During the operation of this solution process for intensive loading problems, instances
of large strain increments can occur which sometimes may lead to an imaginary value of 4.
Since the time-step size for that particular instance cannot be economically reduced, a

sub-increment procedure to circumvent this difficulty as discussed in [20] can be, and is,
used.

3. QUADRILATERAL CYLINDRICAL PANEL ELEMENT

3.1 Displacement field

The geometry and nomenclature of a typical quadrilateral cylindrical panel element
are shown in Fig. 1. The radius is R. The reference Cartesian coordinate systems are
(Y4, Y2, Y* and (3%, y%, »*). The local cylindrical shell coordinate system is (&, #, {).

Let the Kirchhoff-Love hypothesis be employed. The displacement field ii, ©, and w of the
shell may be approximated by the middle surface displacements «, v, and w, and rotations
¢ and ¢ as follows:

uC,n, O =ull,m)— L& n)
&, n, O =uv(&, m) — (&, n) (30)
V—V(é’ n, C) = w(fv 71)

1JSS Vol, 10 No. 2—H
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89 /R
(O-Element node number

Y

Fig. 1. Quadrilateral cylindrical panel discrete element.

where

$(&, n) = Ow[dE
(&, n) = (0w/on) — v/R.

The engineering component of the nonvanishing strain distributions may be expressed as

(30a)

Egy = Egr — (K
By = Egy — Ly (3D
Egn = ey — LKgy
where ¢, €,,, and g, are the midsurface inplane strains, and x, x,,, and kg, are the
curvature changes. In the formulation of the present problem, the Sanders nonlinear

strain—displacement relations are employed which for the cylindrical shell may be
written as:
ege = (QufOL) + (9 + ¥)/2
&gy = (00/0n) + (W/R) + (¢* + ¥*)/2
&gy = (Qu/On) + (0v/08) + Py

Kee = 0¢[0¢ (32)
Koy = plon
Kgn = (0@/n) + (OY[IE) + /R
where
x = (0ufdn — 0v/0&)/2. (32a)

The selection of a suitable interpolation function to represent each of these displace-
ments throughout each element is one of the principal concerns in the construction of a
finite-element assemblage of the whole structure. For small-deflection, linear-elastic prob-
lems,[22] reported a quadrilateral cylindrical-panel element where bicubic-degree poly-
nomials (first order Hermite interpolation in & and n) are used to represent both the inplane
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displacements u, v, and the out-of-plane displacement, w; 12 degrees of freedom (dof’s) at
each corner node (denoted, for convenient reference, as C.C.C. or cubic, cubic, cubic
element). Reference [23] reports a study of a quadrilateral element with bilinear polynomials
for u and », and bicubic polynomilas for w; 6 dof’s per node (termed as L.L.C. or linear,
linear, cubic element). It has been concluded[23] that the explicit inclusion of rigid-body
displacement modes in the assumed displacement field lead to a much better coarse-mesh
solution than if the rigid-body modes were excluded from the assumed displacement
functions, despite the fact that incompatibility of the displacements along the circumfer-
ential edges is introduced by the explicitly-added rigid-body modes which are expressed
in terms of trigonometric functions. Further, it has been found in [10] and [24] for ring
examples and in the present study for a cylindrical shell example that the accuracy and
convergence behavior of the predictions can be improved further by using an L.C.C. element
(or linear, cubic, cubic element); that is, bilinear polynomial for the axial displacement u,
and bicubic polynomials for both the circumferential displacement » and the transverse dis-
placement, w, and with the rigid body modes included explicitly. This L.C.C. assumed
displacement function can be written as

u=o, + &, + nog + &noy, — R sin Oag + R(cos O — cos Bla;,
v = cos fas + & cos Oug + noy + Enag — sin Hag
+ &sin ;0 — R(1 — cos 0 cos B)a,, + Eoys + 1ty
+ Enoyg + Entays + Enlage + gy + 70y,
+ Enay; + Sy + Enagy + Enloys + En’as,
w = sin fog + & sin Oy + cos Bog — & cos Oayq
+ Rsin 0 cos By + Enay, + E20y s + nlay,
+ Enoys + oy + Enta s + Eayg + Py
+ Engo + Euyy + Enagy + Endyy + ey, (33)
where a,, %, ... 25, are parameters which will be expressed in terms of the generalized
nodal displacements. Except for the terms from «, 5 to a5, , the field represented by equation
(33) is that of the L.L.C. element function of [23].

The generalized nodal displacements which are chosen to characterize the deformation
state of the element, are selected such that there are nine degrees of freedom u, v, w, ¢,
W, 0*w/OE dn, OvjOE, dv/on + w/R, and 8%v/0¢ dn at each of the four corner nodes of the
element.

For the static linear-elastic pinched cylinder example of Fig. 2, the predictions of the
displacement under the load obtained by using the present L.C.C. element and those of
[22} and [23] are given in Table |. Advantage of symmetry is taken by analyzing only one
octant of the cylindrical shell. It is seen that the L.C.C. element, 135-dof solution is of the
same accuracy as the C.C.C. element or the L.L.C. element 180-dof prediction. Incidentally,

Timoshenko’s analytical solution[25] tends to be somewhat too stiff, because an inexten-
sional theory is used.

3.2 Stress—strain relation

Because of nonlinear material behavior, although the strain variation through the shell
thickness, by the Kirchhoff-Love hypothesis, is linear, the variation of stress across the
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0094in - 53125

Fig. 2. Pinched cylinder.

thickness may be nonlinear. For computational convenience, the stresses and strains are
evaluated at selected Gaussian points across the thickness, and the corresponding weight-
ing factors are used in evaluating the pertinent integrals by Gaussian quadrature. The
strain-hardening behavior of the material is accounted for by using the mechanical sub-
layer material behavior model in which the material at each Gaussian station is treated as
consisting of equally-strained sublayers of elastic, perfectly-plastic material with each
sublayer having the same elastic modulus but an appropriately different yield stress[15, 16].
The Mises—Hencky yield condition for the plane-stress case is

U oééz + Grmz — OOy t+ 30’5,,2 - oyz =0 (34)

where o, is the known uniaxial yield stress of a given mechanical sublayer of the material
model. This condition establishes a stress boundary such that all possible stress states lie
within or on the envelope @ = 0. In the event that the path between two successive states
lies completely within the envelope, the stresses are below the elastic limit; only elastic
strains occur. The relation between stress increments and elastic strain increments may
be assumed to be linear and to obey Hooke’s law:

Table 1. Displacement under the load of the pinched cylindert

Present Bogner et al.[22] Cantin & Clough(23] L.L.C. element but
Mesh (L.C.C. element) (C.C.C. element) (L.L.C. element) without rigid-body
modes[23]
No. of Displ. No. of  Displ. No. of Displ. No. of Displ.
eqs. in. egs. in. egs. in. egs. in.
2x2 81 —0-0897 108  —0-0808
2x%x3 108 —0.1066 144 —0-1036
2x4 135 —0-1106 180  —0-1098
2x5 162 —0-1119 108 —0-0780 108 —0-00266
2x7 144 —0-1002 144  —0-00420
2x9 180 —0-1073 180  —0-00590
3Ix 49 1200 —0-1128 1200 —0-05583

+ Timoshenko solution[25] (inextensional theory) = —0.1086 in.
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E i, .
Aoy = T (A&, + VAE,,)

ny

E
Ay = T (vAigs + Mgy (35)

E
Aoy, = ———— A&
afﬂ 2(1 + V) 8":"

On the other hand, if all or a portion of the stress path lies on the boundary, plastic strains
are possible. The direction of the plastic strain increment vector is established by the plastic
flow rule in accordance with the theory of the plastic potential[17, 18]. The flow rule can be
expressed as follows:

Ag,P = M(20,, — 0s) (36)

Ag.,F = 260y,

where the plastic flow parameter, A, is a non-negative quantity which is determined (i) from
the fact that the head of the new stress vector must lie on the yield surface, and (ii) by
following the procedure as described in subsection 2.3.

4. NUMERICAL RESULTS AND DISCUSSION

In order to evaluate the accuracy and versatility of the present formulation and solution
scheme, the explosively loaded 6061-T6 aluminum alloy cylindrical panel depicted schem-
atically in Figs. 3 and 4 has been analyzed. The present large-deflection elastic—plastic
predictions are compared with those from available independent PETROS 2 finite-difference
(both spatial and temporal) predictions{3] and with high quality experimental records[26].

The cylindrical panel has the following dimensions: external radius, 3-0 in.; axial length,
12-56 in.; arc span between supports, 120°; and thickness, 0-125 in. All four edges of the
panel are “ideally clamped.” Over the explosively-loaded portion of the shell, the initial

Sheet /
explosive
N, | Strain gages
N N

Framing camera

‘ ' Tesf specimen
P ‘/’éuppor?
v and baffie |
o X
/////
-" / Streak camera

Fig. 3. Experimental arrangement for an explosively-loaded cylindrical panel.
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Geometry Material- properties
Midsurface radius 29375 in. Materiat €061-T6
Thickness 0125 in. Elastic modulus 105 x 10%psi
Length 12:56 in. Poisson,s ratio 173
Arc-span between Yield stress 44,000psi 5
supports i20° Mass /unit vot. 0-00025 tb-sec/ in?
initial uniform radial velocity over loaded regions = 56 50 in. /sec
0-785in,
~1256in- [ .
¢ s 10 205in: - - .
R e e e e e e L od : [
N SEROSARESEy R )] ] ' * i ¢
% xplosive-covered region - 1 oo
7 ‘ A . R - F54in,
g v o
5 e . 1 L t ;
! j : ) Edges

4 ~Edges T 1 ~~-l~- R S e 2922 L o8in.
3__~.;_9.NT_, i : S e E . ' |

R - ‘&\ ; I o] - . .

L N | , 1 0385in
2 3 4 &8 6 7 8 9 10 1t 2 13 14 15 6 | *

Fig. 4. Grid layout for cylindrical panel experiment.

inward radial velocity is 5650 in/sec; elsewhere the initial velocity is zero. Taking into
account symmetry of the explosive loading pattern and geometry, only one half of the
cylindrical panel with the symmetry-prescribed-displacement conditions imposed along
the crown line is modeled. The geometry of this portion is defined in Fig. 4. Since the 6061-
T6 shell material exhibits very little strain hardening, its behavior can be reasonably ap-
proximated as being elastic, perfectly-plastic (EL-PP); accordingly, for convenience of
legitimate comparison with available past independent predictions of the response of this
panel and for economy reasons, EL-PP behavior with £ = 10-5 x 10° psi, o, = 44,000 psi,
and v = 1/3 has been employed in the present predictions and comparisons. However, if
desired, one can readily take into account the rather small strain-hardening and strain-rate
effects of this material.

Concerning the numerical evaluation of the integrals for determining {F,"*}, {F,"} and
{F,"'} of equation (11), nine Gaussian stations (3 x 3 product) for carrying out the area
integration over each quadrilateral element and 4 depthwise Gaussian points at each
areawise Gaussian station are used, since it has been found that this suffices for providing
accurate evaluations.

Before predictions of desired accuracy can be obtained, the question of convergence of
the solution as the space-mesh size is made finer successively is considered. The peak
deflection of point A{x, y) = (9, 9) on the crown line of the cylindrical panel (see Fig. 4) is
plotted in Fig. 5 against the smallest side Ay of the mesh. This is chosen as a gross (or
global) index of convergence. By using the L.C.C. element, three different mesh sizes:
3, 5, and 7 elements in the circumferential direction are studied; in each case, 8 elements
in the longitudinal dir=ction are used. The meshes are denoted, for convenience, as 8 x 3,
8 x 5, and 8 x 7, respectively. It is seen that the convergence of the present solutions is
monotonic from below toward the reference value (the experimental result, 125 in, is
taken as the reference value). Also, it is seen that the L.L.C. element predictions with meshes
8 x 3, 14 x 5, and 10 x 7, tend to be somewhat too stiff to match the experimental value—
in comparison with the L.C.C. element coarse-mesh solutions. Shown also in Fig. 5 is the
PETROS 2 finite-difference predictions{3] where much finer meshes 12 x 6, 16 x §, 20 x 10,
and 24 x 12 have been used.
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Fig. 5. Convergence of the peak deflection as the mesh size is decreased.
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Fig. 6. Effects of the time step size on the peak deflection.
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The above finite-element convergence studies were performed by using the Houbolt
operator with a time-step size of Ar = 1-5 usec. However, it perhaps should be noted that
since for the present nonlinear dynamic system a reliable and validated criterion by which
the proper time-step size can be chosen a prior! is not readily available, numerical experi-
mentation must be carried out to provide a suitably small Ar to insure both the stability
and the convergence of the time-wise integration operator. Illustrated in Fig. 6 are the peak
deflection at point A and the time to the peak deflection vs the square of the time-step size;
an 8 x 5 space-mesh of L.C.C. elements is employed.

In order to assess the present predictions, typical comparisons of the deflection responses
{as a global index) and the strain responses (as a local-effect index) are made in the following.
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Fig. 7. Comparison of predicted cylindrical panel crown deflection reponse histories with
experiment.

Shown in Fig. 7 are the measured and predicted time histories of the mid-surface trans-
verse displacements of two points A(x, y)=(9, 9) and B(x, y)=(13, 9) on the crown line
of the cylindrical panel. Calculations which utilize a comparable number of degrees of free-
dom are selected for presentation here. Accordingly, one half of the cylindrical panel was
modeled by an 8 x 5 mesh of L.C.C. type finite-elements (486 dofs), or by 16 x 8 finite-
difference space meshes with 3 dof’s at each space-mesh station (total 459 dof’s); the
timewise integration operators used are the Houbolt operator with a time-step size of 1'5
usec and the 3-point central difference operator with a time-step size of 5/3 usec, respectively,
for the present finite-element (FE) and the PETROS 2 finite-difference (FD) calculations.
From this comparison with experimental results, it is seen that the present FE prediction is
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somewhat better than the PETROS 2 FD prediction; however, both calculations underpre-
dict the peak deflection. Taking into account the convergence studies shown in Fig. 5, as
the mesh size is made finer, a tendency toward a better correlation can be expected. Also,
in the calculations, the clamped edges of the panel were treated as being ideally clamped;
however, the achievement of an ideally-clamped edge in the experiment may not have been
achieved. This reality should be considered in the theoretical-experimental comparisons.
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Fig. 8. Comparison of instantaneous cylindrical panel crown deformation profile for
predictions and experiment.

Shown versus the experimental result in Fig. 8 are the present FE-predicted and PETROS
2 FD-predicted deformation profiles of the cylindrical panel crown-line (line at circumferen-
tial station y = 9) at a time of 400 usec. Another comparison is made in Fig. 9 for the esti-
mates of the final permanent deformation profile of a cross section at an axial station
x =9. It was based upon an examination of the time-history behavior of the predicted
responses that the profile at ¢ = 1000 usec would represent a reasonably good estimate of
the permanent deformation. Figures 8 and 9 show that both the present predictions and
the PETROS 2 predictions are in reasonably close agreement with experiment, with the
finite-element prediction being somewhat better.

The dynamic strain responses provide a local and more sensitive quantity for examina-
tion. Figure 10 shows the time history of the inner surface circumferential strain at point
C(x, y)=(14, 3). The PETROS 2, 16 x 8 space-mesh predicted strain responses (plotted
in Fig. 10a) is largely one of tension as compared with compression which was measured
during about the first 600 usec. However, as space-mesh size is made finer, improvement in
agreement is observed, such as illustrated by the 32 x 16 space-mesh prediction and the
array B mesh prediction[3]. The meshing used in array B was the uniform 16 x 8 mesh but
modified to be finer near each clamped edges by the addition of 4 evenly-interspersed
coordinate curves; a 24 x 12 nonuniform space-mesh resulted. On the other hand, the
present finite-element 8 x 5 mesh prediction is shown in Fig. 10(b); the strains at point C
within the finite element were calculated from the strain—displacement relations, equation
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(32), by taking the derivatives of the assumed displacement function. By noting the coarse-
ness of the 8 x 5 mesh employed, the agreement with experiment is considered to be
excellent.

Based upon the studies cited here and in [3] and [7], it appears that in order to obtain
comparable prediction accuracy, both the storage requirements and the CPU computer
time for the FE method vs the FD method are comparable. A similar conclusion is reported
in {10] for two-dimensional (beam and ring) structural transient response problems involving
large deflections and elastic—plastic behavior.
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Fig. 10. Comparisons of inner-surface circumferential strains at cylindrical panel station
(14, 3).
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5. SUMMARY REMARKS

The finite-element solution procedure as described herein has been shown to provide another
effective method for treating the large deflection transient responses of a cylindrical shell
including elastic-plastic material behavior. The method is capable of providing accurate
predictions, especially of the strain, with rather coarse meshes compared with those needed
for comparable accuracy by the finite-difference method. A quadrilateral cylindrical panel
element is employed. The assumed displacement fields are represented by a bilinear poly-
nomial expression for the axial displacement », and bicubic polynomials for both the cir-
cumferential v and the transverse w displacements, with the rigid-body modes taken into
account explicity.

Extensions of the present formulation to complex structures such as stiffened shells and/
or structures with cutouts, branches, etc. will be of interest and are in progress.
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Pesiome — MeToabt aHan3a QUHUTHBIX JTEMEHTOB [TPUMEHAIOTCA AN TPOOIEMBbI OOJBLIOTO
OTKJIOHEHHS 3NACTHYHO-MIACTHYHON AMHAMHUYECKOM XapakTEPUCTUKK LHIHHIPUYECKHX KOXKY-
XOB NpH mepexoaHoil Harpyske. C Ue/ib WACATM3UPOBAHUS CTPYKTYDPbI LMITHHIPHYECKOIO
KOXYyXa, IPUMEHAETCS CIIENHaTbHOE NPEeANIOI0NKEHUE YEThIPEXYTOJILHOrO CMELIEHH DHHUTHBIX
JNEMEHTOB UNAMHAPUYECKON TaHe M. POpMyIMPOBKAa OCHOBBIBAETCA HA MPUHLMIE BO3MOX-
HbIX IepeMeuleHuii U Ha npuHuune 4’ Anambepa. Ins peiueHds MOJy4YHBIINXCH YPaBHEHUH 110
BPEMEHHM TIPHMEHSETCS NPOLEAYPa HEOCPEACTBEHHOTO YHC/IEHHOrO0 MHTerpuposadns. [1pea-
CKa3aHHAA HACTOSALIMM JAMHAMHYECKAS XapAKTEPHCTHKA B3PLIBYATO HATPYXKEHHON LHIMHADU-
YECKOI TTaHeTd CPaBHMBAETCSA C APYTMMH HE3aBUCHMBIMM [IPEICKA3AHUAMH U C IKCIIEPHUMEH-
Ta/JIbHO BLIMEPEHHONM NHHAMHYECKON XAPAaKTEPUCTHKOM, HAILIM, YTO pe3yJIbTATbl COBIAJIH.



